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ABSTRACT

A simple technique, developed in Phillips (1987), is used to approximate

A A
A

Cov(8mH, pi) i = 1,2 where 8mH is the Mantel-Haenszel log-odds-ratio estimator

A

for a 2x2x1( table and the pi are the sample marginal proportions. These results

are then applied to obtain an approximate variance estimate of an adjusted risk

difference based on the Mantel-Haenszel odds-ratio estimator.
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1. INTRODUCTION

Consider the standard 2x2xK table whose k.12 2x2 layer is specified below.

Group 1

Group 2

Total

1 0 Total

Ak

Ck

Bk

Dk

nik

n2k

mlk mOk tkc

Probability models for the 2x2x1( table include the two Binomial model (2B),

Hauck, Anderson & Leahy, (1982) and the non-central (or "extended")

hypergeometric model (NCH), Breslow, (1981). In both models the different 2x2

layers of the 2x2xK table are statistically independent. In the 2B model, Ak

and Ck are independent binomial variates, with Ak B(pik, n1k) and Ck B(p2k,

n2k) In the NCH model; Ak has the non-central hypergeometric distribution

given in (1.1) in which the margins nik, mik and tk are larded as fixed, and

'Pk is the non-centrality parameter.

Prob(Ak = aNk, nlk, mlk, tk) (pk)a (n1k)(tk-n1k),D, (1.1)
a mlk-a

where

D E (pk)11 (n1k)(tk-nlk)
u mlk-u

In (1.2), the range of summation is given by

max(0 tmlk nlk tk) 5 u 5 min(,m1k, nlk)

(1.2)

(1.3)

Note that in (1.1) the integer, a, is also subject to the inequalities in (1.3).

When liJk = 1, (1.1) reduces to the usual hypergeometric distribution. The NCH

model may be viewed as the conditional distribution of Ak in the 2B model given

the total Ak Ck = mlk.
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The common odds-ratio assumption may be expressed in both the 2B and the

NCH models. In the 2B model it is expressed by assuming that the odds-ratio,

i.e.,

(plk/(1-131k))/(1)20(l-1)2k)),

does not depend on k, i.e., Vic . 11).

The common-odds-ratio assumption may be expressed in the NCH model by the

assumption that 4k in (1.1) does not depend on k.

A

The Mantel-Haenszel (1959) estimator, tPmH, for 4; under the common odds-ratio

assumption is defined by

(E AkDk/tk)/(E BkCk/tk) .

It is often convenient to work with the natural log of IP, i.e.,

and the corresponding estimator

and

where

8 - ln(10

A

8mH

The two marginal rates (or risks) are the sample proportions:

P1 ' (X Ak)/n1,

(1.4)

(1.5)

A

p2 (E Ck)/n2, (1.6)

ni = E nik and n2 = X n2k.

The main results of this note are simple asymptotic expressions for the
A

A A

covariance between OmH and pi and p2 that are ve'id for both the 2B and the NCH

models. My approach is to :(ploit two useful formulas ((1.8) and (1.9) below)
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that were developed in Phillips (1987) and given in Phillips and Holland (1987).

These are summarized in the following two lemmas.

Lemma 1: Let R E AkDk/tk and S / BkCk/tk and let r E(R) and s E(S)

where these expectations are taken with respect to either the 2B or the NCH

models. Define gmH

Then

S-s
6MH ° R-r

A ,Var(R) Var(S)
8MH " 5MH (31:)

r
2 )

s2

(1.7)

(1.8)

A

The virtue Of (1.8) is that it allows the non-linear emH to be approximated

by emH which is linear in R and S. In addition, (1.8) shows the way in which
A

the distribution of emH approximates emH --namely, that the quantity

Var(R) Var(S)
+ ---y-- must be small. Phillips and Holland (1987) show how this condi-

tion is satisfied in both the "large stratum" and "sparse data" situations.

Lemma 2: Let x(k) x(x-1)...(x-k+1) denote the descending factorial. If a, 0,

y, 6 are non-negative integers and E is any non-negative integer not exceeding

min(a,S) then under either the 2B or the NCH model we have

E(A(a) B(0) ("Of) D(6)) . E(A(a-E) B(0+e) C(Y+E) D(6-C.)) (1.9)kks-kkkkkkk
Equation (1.9) may be used to establish useful relationships between various

covariances that involve Ak, Bk, Ck and Dk. This is illustrated in the proof of

Theorem I.

Theorem 1: Under the common odds-ratio assumption and either the 2B or the NCH

model

(a) Cov(6mH, PI) - 1/n1,

BEST COPY AVAILABLE



and

(b) Cov(gmH, 112) - 1/n2.

A

From Lemma 1 we may use gmH as an approximation to emH and thereby use

A AA A

Theorem 1 to obtain asymptotic approximations to Cov(emH, pi) and Cov(emH, p2)

under the 2B and NCH models. In section 2, I discuss an application of these

covariance calculations.

Proof of Theorem 1. From the definitions made in Lemma 1,

Cov(gmH, Pi) = Cov(e + R-r - S-s, Pi) = Cov(11/. - !, 1"),.)

r s

1 ( A r A

= tCov(R,pi) - Cov(S,p01.

A A

Hence we need expressions for -
'

Cov(R, pi) and Cov(S, pi).
s

4

(1.10)

It is well-known (and an easy application of Lemma 2 with a = 6 = 1, 0 = V . 0,

and E = 1) that under either the 2B or the NCH models we have

E(AkDk) Vk E(BkCk).

Then (1.11) may be used to show that under the common odds-ratio assumption

or
r E(R) = V E(S) = s,

- (1.12)

Parts (a) and (b) of Theorem 1 are proved in a similar manner so I will consider

only (a).

We need expressions for Cov(R, Pi) and VCov(S, Pi) But

r 1
Cov(R, pi) = L Cov(AkDk, pi)

k k

E Cov(AkDk, As). (1.13)
k,s -k 1



But, for k j, the variates are independent so that (1.13) reduces to

A

Cov(R, pl) = 1 E [E(4)k) - E(Aok) E(Aol .

nl Lk

Similarly we have

But

A 1V1C
IPCov(S, pi) IIPE(AkBkCk) - 41E(BkCk) E(Ak)].

n1 k tk

2

E(AkDk) E(Ak(Ak-1)Dk) + E(AkDk)

(E(Ak2) Dk) + E(AkDk)

5

(1.14)

(1.15)

Now apply Lemma 2 to (1.16) with a - 2, 0 = = 0, 6 1 and E = 1 and obtain

2

E(AkDk) V,JE(AkBkCk) + E(AkDk) (1.17)

Hence, from (1.17) and (1.11), (1.,14) becomes

A

Cov(R, pl) = 1 E [1)E(AkB,C0 TE(Bkco E(Ak) E(A001
ni k tk

= 4,Cov(S, PI) 1
tk

E1E(AkDk).
n1 k

Thus, combining (1.19) with (1.10) and (1.12) we have

Covaim, PI) = I fl E E(A0)1 . 1 r . 1 QED
r ni t

k k
r ni
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2. A THEORETICAL APPLICATION AND EXAMPLE

In this section we develop the necessary formulas for applying the Taylor

A
A

series- or 6-method to obtain standard errors for functions of OmH, pi and p2

and then apply these results and those of section 1 to obtain an approximate

A
A

standard error for a particular function of OmH and p2 that arises in the use of

the Mantel-Haenszel estimator to study differential difficulty of test questions

across groups of examinees (Holland, 1985; Holland and Thayer, 1988).

2.1 A general formula
A A AA A A A

Let f f(OmH, pi, p2) be a differentable iunction of OmH, pi and p2. The

6-method (Bishop, Fienberg and Holland, 1975) may be used to derive the large-
A

sample variaAce of f. It is summarized below.

A AA A
Theo_em 2: As the variances of OmH, pi and p2 12. to zero, the variance of f is

approximated bx:

A
af

Var(f) (-0-u)2 Var(OmH) + (gT)2 Var(Pi)

af A af af A
)2 Var(P2) + 2 Cov(OmH, Pl) (2.1)

-132 ae a pi

A

af af A A af af A A

Cov(pl, 1)2).+ 2 ap2 cov(OmH, P2)
2 Opi 8P2

m

From Theorem 2 the covariances derived in section 1 may be combined with
A

A A A A
variance estimates of OmH, pi and p2 and the covariance of pi and p2 to yield

an approximate standard error for f. Robins, Breslow, and Greenland (1986)
A A

give an estimator, 02(8mH), of the variance of OmH that is valid in a variety of

asymptotic situations. This variance estimator may be expressed in the notation

of Lemma 1 as

A A
2

A A02(emH) E nk.uk + 4MH BkCk][Ak + Dk + IlimH(Bk + Ck)] (2.2)
k
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This variance estimator is also discussed in Phillips and Holland (1987).

A A

The following lemma summarized the variances and covariance of pi and ip) in

the 211 and NCH cases.

Lemma 3: (a) In the 2B case:

where wik nik/ni, and

and

A
1 VVar(pi) L
i

wik pik (1-pik)
n

A A

Cov(pl, p2) . 0.

(b) In the NCH case:

A I
Var(pi) -2 L Var(Ak)

ni

A A

Cov(p1,102)
1 r

L Var(Ak).
n1n2 k

'2.4)

(2.5)

(2.6)

In Theorem 3, part .(a), it is clear that estimates of the variances and

AA
covariances of pi and p2 under the 2B model are straightforward. For example,

Ak/nik and Ck/n2k can be used as estimates of pik and P2k, respectively, in

(2.3). On the other hand, by Jensen's inequality we have

E wik Pik (1-Pik) 17i(1-Ti)

where -15i . wik pik. Hence from (2.3) and (2.7) we see that the simple

"binomial variance" estimate,

IA

Pi(1 Pi),ni

(2.7)

(2.8)

A

provides an estimate of Var(pi) that is, at worst, an over-estimatl. When K is

large and some of the tk are small (2.8) is often a better estimat, of the vari-

A

ance of Var(pi) than the one obtained by substituting the sample proportions,

A

pik, for pik in (2.3).
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From part (b) of Lemma 3 it is evident that estimates of the variances and

A

covariances of PI and p2 under the NCH model all require estimates of X Var(Ak),

which, in turn, involves the estimates of the variance of the NCH variate, Ak.

Harkness (1965) d.scusses the moments of Ak in the NCH case. I do not know

whether or not those results can be used to give valid estimates of 2 Var(Ak)

that are needed to use the NCH part of Lemma 3.

2.2 An application to a "Mantel-Haenszel adjusted risk difference".

A

In biomedical applications, VmH provides an adjusted estimate of the rela-

tive odds of getting a disease in an exposed group of individuals compared to an

unexposed group. The adjustment is for differences in the distribution of

potential confounding variables that may exist between the two groups.

Holland (1985) discussed the use of GmH as an adjusted measure of "bias" in
A

test questions. In this use of the GmH, "getting the disease" is replaced by

"getting the test item right" and the "exposed" and "unexposed" groups are

replaced by a reference and a focal group of examinees (i.e. White and Blacks or

Males and Females). The adjustment is for overall test performance. Since that

suggestion, the use of the Mantel-Haenszel procedure to measure "item bias" has

become wide-spread at testing organizations such as Educational Testing Service.

In these testing applications, there is an interest in expressing the estimated
A

logit differences, GmH, in terms of the probability scale as an adjusted dif-

ference in proportions (eg. Dorans and Kulick, 1986). One way of expressing GmH

in the "p-scale" is the following statistic that in biometric terms might be

called the "Mantel-Haenszel adjusted risk difference",

A
A

A p2 exp[GmH)
RDMH = p2 - AA

+ P2 exp{8mH}
(2.9)
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The second term in the right-hand-side of (2.9) is the value of pi that would be

A

obtained if P2 were "adjusted" by GmH, i.e. if pi were chosen to solve for pi in

the equation,

A

A PI P
2

OMH log( /

1-P1 1-P2

A A

(2.10)

The raw risk difference, p2 - pi, makes no use of the matching or stratification

that is available and, for this reason, is not of much practical value except in

special circumstances. The Mantel Haenszel adjusted risk difference is based on

the stratification and is therefore a type of "standardized" risk difference.

If RDmH from (2.9) is used, the need for its standard error erises and

the results of sections 1 and 2.1 may be used to obtain an estimate of the variance

of RDMH under the 2B model. This is given in Theorem 3, below.

Theorem 3: Under the 2B model, the common odds-ratio assumption and any condi-
A

tions that insure the approximation of NH la OmH, the variance of RDMH in (2.9)

is estimated bx

(1-G)2 1;2 (142) G2 H2(142)12 62(614H) 2 G(1-G) P2(142) (2.13)
n2 n2

where
A AA A

G 41/.114/(1-P2 4/MH P2)2

A ^
and 020mH) is the Robins-Breslow-Greenland variance estimate of OmH given in

A

(2.2).

A
A A

Proof: Let f(0mH, pi, p2) be defined by RDMH in (2.9). Then the relevant

derivatives from Theorem 2 are easily shown to be

af af af
- p2(1-p2)G, s = 0, and a-- = 1 - G.

opi uP2
(2.14)

These derivatives when combined, via Theorem 2, with the covariance in Theorem

lb, and using (2.8) instead of (2.3) yields the rasult. QED.
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3. DISCUSSION

The technique used to prove Theorem 1 (i.e. Lemma 1 and 2) is useful in its

own right since it is cimple and yet widely applicable to computations involving

the Mantel-Haenszel estimator. In addition, I think it is rather remarkable
A

A

that the asymptotic covariances of 1og(41mH) and the pi are as simple as they

appear in Theorem 1.

The adjusted risk difference, RDMH, is of potential value in those applica-

A
tions where at least one of the sample rates, say p2, is descriptive of a rele-

vant population rate. This occurs in the testing applica..ions referred to

earlier but may also arise in prospective epidemiological studies as well. The

variance estimate in Theorem 3 is asymptotically valid whenever the

A

Robins-Breslow-Greenland estimate of the variance of 8mH is valid with the added

proviso that the "binomial variance estimate", (2.8), be an appropriate estimate

A

of the variance of p2. Thus the variance estimate in Theorem 3 will be most

useful in the so-called "sparse-data" case where K is large and the tk are not.

In the large stratum case, i.e. when K is small and the tk are large, it may be

A
better to use formula (2.3) to estimate the variance of p2. This substitution

would only change the first term of formula (2.13).

I have not performed a small sample study of the behavior of the variance

estimate in Theorem 3, but because of its close connection to the
A

Robins-Breslow-Greenland variance estimate for 8mH I would expect it to perform

quite well in both the sparse data and the large stratum cases.

To extend Theorem 3 to the NCH model it would be necessary to have a useful

estimate of E Var(Ak) for the NCH case in order to apply Lemma 2(b). I do not

know of any results in this area. However, in the NCH model, while the sample

A A

marginal rates pi and p2 are still defined by (1.6), it is not clear what mean-

ing to attach to them as estimates of population rates. Thus, RDmH may not be a

useful parameter in the NCH case.
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